Effects of rhenium dopants on photocarrier dynamics and optical properties of monolayer, few-layer, and bulk MoS2.

نویسندگان

  • Yuanyuan Li
  • Qingfeng Liu
  • Qiannan Cui
  • Zeming Qi
  • Judy Z Wu
  • Hui Zhao
چکیده

We report a comprehensive study on the effects of rhenium doping on optical properties and photocarrier dynamics of MoS2 monolayer, few-layer, and bulk samples. Monolayer and few-layer samples of Re-doped (0.6%) and undoped MoS2 were fabricated by mechanical exfoliation, and were studied by Raman spectroscopy, optical absorption, photoluminescence, and time-resolved differential reflection measurements. Similar Raman, absorption, and photoluminescence spectra were obtained from doped and undoped samples, indicating that the Re doping at this level does not significantly alter the lattice and electronic structures. Red-shift and broadening of the two phonon Raman modes were observed, showing the lattice strain and carrier doping induced by Re. The photoluminescence yield of the doped monolayer is about 15 times lower than that of the undoped sample, while the photocarrier lifetime is about 20 times shorter in the doped monolayer. Both observations can be attributed to diffusion-limited Auger nonradiative recombination of photocarriers at Re dopants. These results provide useful information for developing a doping strategy of MoS2 for optoelectronic applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electron dynamics in MoS2-graphite heterostructures.

The electron dynamics in heterostructures formed by multilayer graphite and monolayer or bulk MoS2 were studied by femtosecond transient absorption measurements. Samples of monolayer MoS2-multilayer graphite and bulk MoS2-multilayer graphite were fabricated by exfoliation and dry transfer techniques. Ultrafast laser pulses were used to inject electron-hole pairs into monolayer or bulk MoS2. The...

متن کامل

Type-I van der Waals heterostructure formed by MoS2 and ReS2 monolayers

We report a van der Waals heterostructure formed by monolayers of MoS2 and ReS2 with a type-I band alignment. First-principle calculations show that in this heterostructure, both the conduction band minimum and the valence band maximum are located in the ReS2 layer. This configuration is different from previously accomplished type-II van der Waals heterostructures where electrons and holes resi...

متن کامل

Separating electrons and holes by monolayer increments in van der Waals heterostructures

Since the discovery of graphene and its outstanding chemical, optical, and mechanical properties, other layered materials have been fiercely hunted for throughout various techniques. Thanks to their van der Waals interaction, acting as weak glue, different types of layered materials with mismatched lattices can be stacked with high quality interfaces. The properties of the resulting multilayer ...

متن کامل

Complex electrical permittivity of the monolayer molybdenum disulfide (MoS2) in near UV and visible

Temperature and Fermi energy dependent exciton eigenenergies of monolayer molybdenum disulfide (MoS2) are calculated using an atomistic model. These exciton eigen-energies are used as the resonance frequencies of a hybrid Lorentz-Drude-Gaussian model, in which oscillation strengths and damping coefficients are obtained from the experimental results for the differential transmission and reflecti...

متن کامل

Two-dimensional MoS2 as a new material for electronic devices

We overview fundamental properties, preparation techniques, and potential device applications of singleand few-monolayer-thick molybdenum disulfide MoS2 belonging to a new emerging class of materials: 2-dimensional semiconductors. To a large extent, the interest in the 2-dimensional materials is fueled by the quest for alternatives to graphene, which is hardly suitable for electronic devices be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 9 48  شماره 

صفحات  -

تاریخ انتشار 2017